If it's not what You are looking for type in the equation solver your own equation and let us solve it.
g^2=49g
We move all terms to the left:
g^2-(49g)=0
a = 1; b = -49; c = 0;
Δ = b2-4ac
Δ = -492-4·1·0
Δ = 2401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2401}=49$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-49)-49}{2*1}=\frac{0}{2} =0 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-49)+49}{2*1}=\frac{98}{2} =49 $
| 4/v=1/4 | | -21=-5x-6 | | 12-2u=9u+ | | 7x-8=6(x+9)-7 | | -2=3x-23 | | -2=3x-83 | | 4(6x+10)=2x+1 | | 90=x+39+2x | | x^2=2^64 | | 1/3y+9=1/10y | | x+3=5x4 | | 8.3+-2y=-3.4+4.6y-4.6y | | 1/3y+9=1/6y | | 8k-48+58=8k | | 0.2x+2.8=-4 | | 3(x-2)+7=-8(x-5) | | -93=9+6v | | g/2+11=25 | | 2/3(n×6)=10 | | x-82+x=180 | | 8x=-x+36 | | 8m/3=6/11 | | 1/5=26/x | | 7w-17=39 | | 3^(2x)+3^(x+1)=810 | | 3^{2x}+3^{x+1}=810 | | 2.5x=540 | | -5(x+1)+3x=6-4x-3) | | 45+360=66+23u+31 | | 7x+6x-63=42-8x | | 6x+18=7x-1 | | 7x+6x-63=42 |